Bi-level programming model and genetic simulated annealing algorithm for inland collection and distribution system optimization under uncertain demand
نویسندگان
چکیده
منابع مشابه
Genetic Algorithm for Supply Planning Optimization under Uncertain Demand
Supply planning optimization is one of the most important issues for manufacturers and distributors. Supply is planned to meet the future demand. Under the uncertainty involved in demand forecasting, profit is maximized and risk is minimized. In order to simulate the uncertainty and evaluate the profit and risk, we introduced Monte Carlo simulation. The fitness function of GA used the statistic...
متن کاملAn Integrated Model of Project Scheduling and Material Ordering: A Hybrid Simulated Annealing and Genetic Algorithm
This study aims to deal with a more realistic combined problem of project scheduling and material ordering. The goal is to minimize the total material holding and ordering costs by determining the starting time of activities along with material ordering schedules subject to some constraints. The problem is first mathematically modelled. Then a hybrid simulated annealing and genetic algorithm is...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کاملContinious Optimization Problem Solution with Simulated Annealing and Genetic Algorithm
Simulated Annealing and Genetic Algorithm are two well-known metaheuristic algorithms for combinatorial optimization. These two methods have also been used for solving constrained continuous problems. In this study, five constrained continuous problems have been solved both Simulated Annealing (SA) and Genetic Algorithm (GA). Optimum results have been compared with real optimum values obtained ...
متن کاملCombined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems
Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Production Engineering & Management
سال: 2018
ISSN: 1854-6250,1855-6531
DOI: 10.14743/apem2018.2.280